МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Самарской области

Юго-Западное управление МО СО

ГБОУ СОШ №1 с.Приволжье

PACCMOTPEHO

На заседании предметной методической кафедры

Протокол №1

от «29» августа 2025 г.

СОГЛАСОВАНО

и.ф. зам. директора по НМР

У Бурдаева М.А.

«29» августа 2025 г.

УТВЕРЖЛЕЙО. Директор школы

Фиреова С./ Ериказ № 200

or «29» abrycia 20

РАБОЧАЯ ПРОГРАММА

учебного предмета «Биология» (синхронизированная)

для обучающихся 10 класса

Программа реализуется с использованием оборудования Центр образования естественнонаучной и технологической направленностей «Точка роста»

Модельная синхронизированная программа базового и углублённого изучения предмета «Биология» в 10 классе составлена на основе рабочей программы среднего общего образования по биологии (базовый уровень), составленной на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», Требований к результатам освоения основной образовательной программы среднего общего образования, представленных в Федеральном государственном образовательном стандарте среднего общего образования, с учётом «Концепции преподавания учебного предмета «Биология» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы и основных положений Примерной программы воспитания.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Основу подходов к разработке модельной (синхронизированной) рабочей программы СОО по биологии, к определению общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Биология» для 10 класса на базовом/углублённом уровне составили концептуальные положения ФГОС СОО о взаимообусловленности целей, содержания, результатов обучения и требований к уровню подготовки выпускников.

В соответствии с данными положениями модельная рабочая программа СОО устанавливает обязательное (инвариантное) предметное содержание, количественные и качественные его характеристики на каждом этапе изучения предмета, предусматривает принципы структурирования содержания; распределение учебных часов по тематическим разделам, рекомендует примерную последовательность изучения отдельных тем курса с учётом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся методическую интерпретацию целей изучения базовом/углублённом уровне: современных приоритетов в системе среднего общего образования, содержательной характеристики планируемых результатов освоения основной образовательной программы среднего общего образования (личностных, метапредметных, предметных), основных видов учебно-познавательной деятельности ученика по освоению содержания предмета. По всем названным позициям в программе соблюдена преемственность с рабочей программой основного общего образования по биологи (для 5—9 классов образовательных организаций, базовый уровень).

Данная программа является ориентиром для составления рабочих программ, авторы которых могут предложить свой подход к структурированию и последовательности изучения учебного материала, а также своё видение относительно возможности выбора вариативной составляющей содержания предмета дополнительно к обязательной (инвариантной) части его содержания.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «БИОЛОГИЯ» Учебный предмет «Биология» в среднем общем образовании занимает важное место. Он обеспечивает формирование у обучающихся представлений о научной картине мира; расширяет и обобщает знания о живой природе, её отличительных признаках — уровневой организации и эволюции; создаёт условия для: *познания* законов живой природы, формирования функциональной грамотности, навыков здорового и безопасного образа жизни, экологического мышления, ценностного отношения к живой природе и человеку.

Большое значение учебный предмет «Биология» имеет также для решения воспитательных и развивающих задач среднего общего образования, социализации обучающихся. Изучение биологии на базовом/углублённом уровнях обеспечивает условия для формирования интеллектуальных, коммуникационных и информационных навыков, эстетической культуры, способствует интеграции биологических знаний с представлениями из других учебных предметов, в частности, физики, химии и географии. Названные положения о предназначении учебного предмета «Биология» составили основу для определения подходов к отбору и структурированию его содержания, представленного в данной программе.

Отбор содержания учебного предмета «Биология» осуществлён с позиций культуросообразного подхода, в соответствии с которым обучающиеся должны освоить знания и умения, значимые для формирования общей культуры, определяющие адекватное поведение человека в окружающей природной среде, востребованные в повседневной жизни и практической деятельности. Особое место в этой системе знаний занимают элементы содержания, которые служат основой для формирования представлений о современной естественно-научной картине мира и ценностных ориентациях личности, способствующих гуманизации биологического образования.

Структурирование содержания учебного материала в программе осуществлено с учётом приоритетного значения знаний об отличительных особенностях живой природы, о её уровневой организации и эволюции. В соответствии с этим в структуре учебного предмета «Биология» выделены следующие содержательные линии: «Биология как наука. Методы научного познания», «Клетка как биологическая система», «Организм как биологическая система», «Система и многообразие органического мира», «Эволюция живой природы», «Экосистемы и присущие им закономерности».

Учебный предмет «Биология» на углубленном уровне на ступени среднего общего образования завершает биологическое образование в школе и ориентирован на расширение и углубление знаний обучающихся о живой природе, основах молекулярной и клеточной биологии, эмбриологии и биологии развития, генетики, селекции, биотехнологии, эволюционного учения и экологии.

Изучение учебного предмета «Биология» на углубленном уровне ориентировано на подготовку обучающихся к последующему получению биологического образования в вузах и организациях среднего профессионального образования. Основу его содержания составляет система биологических знаний, полученных при изучении обучающимися соответствующих систематических разделов биологии в основной школе. В 10 классе эти знания получают развитие. Так, расширены и углублены биологические знания о растениях, животных, грибах, бактериях, организме человека, общих закономерностях жизни; дополнительно включены биологические сведения прикладного и поискового характера, которые можно использовать как ориентиры для последующего выбора профессии. Возможна также интеграция биологических знаний с соответствующими знаниями, полученными обучающимися при изучении физики, химии, географии и математики.

Структура программы учебного предмета «Биология» базового/углублённого уровня отражает системно-уровневый и эволюционный подходы к изучению биологии. Согласно им, изучаются свойства и закономерности, характерные для живых систем разного уровня организации, эволюции органического мира на Земле, сохранения биологического

разнообразия планеты. Так, в 10 классе изучаются основы молекулярной и клеточной биологии, эмбриологии и биологии развития, генетики и селекции, биотехнологии и синтетической биологии; актуализируются знания обучающихся по ботанике, зоологии, анатомии, физиологии человека.

обеспечить Учебный предмет «Биология» призван освоение обучающимися биологических теорий и законов, идей, принципов и правил, лежащих в основе современной естественно-научной картины мира; знаний о строении, многообразии и особенностях клетки, организма, популяции, биоценоза, экосистемы; о выдающихся достижениях, современных исследованиях в биологии, прикладных аспектах биологических знаний. Для развития и поддержания интереса обучающихся к биологии наряду со значительным объёмом теоретического материала в содержании учебного предмета «Биология» предусмотрено знакомство с историей становления и развития той или иной области биологии, вкладом отечественных и зарубежных учёных в решение важнейших биологических и экологических проблем.

ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «БИОЛОГИЯ»

Цель изучения учебного предмета «Биология»— овладение обучающимися знаниями о структурно-функциональной организации живых систем разного ранга и приобретение умений использовать эти **знания**: для грамотных действий в отношении объектов живой природы и решения различных жизненных проблем; в формировании интереса к определённой области профессиональной деятельности, связанной с биологией, или к выбору учебного заведения для продолжения биологического образования.

Достижение цели изучения учебного предмета «Биология» обеспечивается решением следующих задач *на базом уровне*:

- освоение обучающимися системы знаний о биологических теориях, учениях, законах, закономерностях, гипотезах, правилах, служащих основой для формирования представлений о естественно-научной картине мира; о методах научного познания; строении, многообразии и особенностях живых систем разного уровня организации; выдающихся открытиях и современных исследованиях в биологии;
- формирование у обучающихся познавательных, интеллектуальных и творческих способностей в процессе анализа данных о путях развития в биологии научных взглядов, идей и подходов к изучению живых систем разного уровня организации;
- становление у обучающихся общей культуры, функциональной грамотности, развитие умений объяснять и оценивать явления окружающего мира живой природы на основании знаний и опыта, полученных при изучении биологии;
- формирование у обучающихся умений иллюстрировать значение биологических знаний в практической деятельности человека, развитии современных медицинских технологий и агробиотехнологий;
- воспитание убеждённости в возможности познания человеком живой природы, необходимости бережного отношения к ней, соблюдения этических норм при проведении биологических исследований;
- осознание ценности биологических знаний для повышения уровня экологической культуры, для формирования научного мировоззрения;
- применение приобретённых знаний и умений в повседневной жизни для оценки последствий своей деятельности по отношению к окружающей среде, собственному здоровью; обоснование и соблюдение мер профилактики заболеваний.

На углубленном уровне:

ознакомление обучающихся с методами познания живой природы: исследовательскими методами биологических наук (молекулярной и клеточной биологии, эмбриологии и биологии развития, генетики и селекции, биотехнологии и синтетической биологии, палеонтологии, экологии); методами самостоятельного проведения биологических

исследований в лаборатории и в природе (наблюдение, измерение, эксперимент, моделирование);

овладение обучающимися умениями: самостоятельно находить, анализировать использовать биологическую информацию; пользоваться биологической терминологией и символикой; устанавливать связь между развитием биологии и социально-экономическими и экологическими проблемами человечества; оценивать последствия своей деятельности по отношению к окружающей природной среде, собственному здоровью и здоровью окружающих людей; обосновывать и соблюдать меры профилактики инфекционных заболеваний, правила поведения в природе и обеспечения безопасности собственной жизнедеятельности в чрезвычайных ситуациях природного и техногенного характера; характеризовать современные научные открытия в области биологии;

развитие у обучающихся интеллектуальных и творческих способностей в процессе знакомства с выдающимися открытиями и современными исследованиями в биологии, решаемыми ею проблемами, методологией биологического исследования; проведения экспериментальных исследований, решения биологических задач, моделирования биологических объектов и процессов;

воспитание у обучающихся ценностного отношения к живой природе в целом и к отдельным её объектам и явлениям; формирование экологической, генетической грамотности, общей культуры поведения в природе; интеграции естественно-научных знаний;

приобретение обучающимися компетентности в рациональном природопользовании (соблюдение правил поведения в природе, охраны видов, экосистем, биосферы), сохранении собственного здоровья и здоровья окружающих людей (соблюдения мер профилактики заболеваний, обеспечение безопасности жизнедеятельности в чрезвычайных ситуациях природного и техногенного характера) на основе использования биологических знаний и умений в повседневной жизни;

создание условий для осознанного выбора обучающимися индивидуальной образовательной траектории, способствующей последующему профессиональному самоопределению, в соответствии с индивидуальными интересами и потребностями региона.

МЕСТО УЧЕБНОГО ПРЕДМЕТА «БИОЛОГИЯ» В УЧЕБНОМ ПЛАНЕ

В системе среднего общего образования «Биология», изучаемая на базовом уровне, признана обязательным учебным предметом, входящим в состав предметной области «Естественные науки». Учебным планом на её изучение отведено 70 учебных часов, по 1 часу в неделю в 10 классе. В тематическом планировании указан резерв учебного времени, которое рекомендуется для реализации авторских подходов по использованию разнообразных форм организации учебного процесса.

Учебный предмет «Биология» углублённого уровня изучения входит в состав предметной области «Естественные науки». Его изучение предусмотрено в классах естественно-научного профиля, например химических, химико-биологических и медицинских. В этих классах изучение данного предмета предусмотрено в объёме учебной нагрузки не менее 3 ч в неделю в 10-11классе (по 105 ч в год).

Отбор организационных форм, методов и средств обучения биологии осуществляется с учётом специфики его содержания и направленности на продолжение биологического образования в организациях среднего профессионального и высшего образования.

Обязательным условием при обучении биологии на углублённом уровне является проведение лабораторных и практических работ. Также участие обучающихся в выполнении проектных и учебно-исследовательских работ, тематика которых определяется учителем на основе имеющихся материально-технических ресурсов

и местных природных условий.

В тематическом планировании для каждого класса предполагается резерв учебного времени. На базовом уровне его рекомендуется использовать для повторения и закрепления материала, а также рефлексии. На углубленном уровне для проведения обобщающих уроков, защиты обучающимися проектных и учебно-исследовательских работ.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «БИОЛОГИЯ»

Согласно $\Phi \Gamma O C$ COO, устанавливаются требования к результатам освоения обучающимися программ среднего общего образования: личностные, метапредметные и предметные.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

В структуре личностных результатов освоения предмета «Биология» выделены следующие составляющие: осознание обучающимися российской гражданской идентичности — готовности к саморазвитию, самостоятельности и самоопределению; наличие мотивации к обучению биологии; целенаправленное развитие внутренних убеждений личности на основе ключевых ценностей и исторических традиций развития биологического знания; готовность и способность обучающихся руководствоваться в установками, деятельности ценностно-смысловыми присущими системе биологического образования; наличие правосознания экологической культуры, способности ставить цели и строить жизненные планы.

Личностные результаты освоения предмета «Биология» достигаются в единстве учебной и воспитательной деятельности в соответствии с традиционными российскими социокультурными, историческими и духовно-нравственными ценностями, принятыми в обществе правилами и нормами поведения и способствуют процессам самопознания, самовоспитания и саморазвития, развития внутренней позиции личности, патриотизма и уважения к закону и правопорядку, человеку труда и старшему поколению, взаимного уважения, бережного отношения к культурному наследию и традициям многонационального народа Российской Федерации, природе и окружающей среде.

Личностные результаты освоения учебного предмета «Биология» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1. Гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

осознание своих конституционных прав и обязанностей, уважение закона и правопорядка; готовность к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении биологических экспериментов; способность определять собственную позицию по отношению к явлениям современной

способность определять собственную позицию по отношению к явлениям современной жизни и объяснять её;

умение учитывать в своих действиях необходимость конструктивного взаимодействия людей с разными убеждениями, культурными ценностями и социальным положением;

готовность к сотрудничеству в процессе совместного выполнения учебных, познавательных и исследовательских задач, уважительного отношения к мнению оппонентов при обсуждении спорных вопросов биологического содержания; готовность к гуманитарной и волонтёрской деятельности.

2. Патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма, уважения к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, свой язык и культуру, прошлое и настоящее многонационального народа России;

ценностное отношение к природному наследию и памятникам природы; достижениям России в науке, искусстве, спорте, технологиях, труде;

способность оценивать вклад российских учёных в становление и развитие биологии, понимания значения биологии в познании законов природы, в жизни человека и современного общества;

идейная убеждённость, готовность к служению и защите Отечества, ответственность за его судьбу.

3. Духовно-нравственного воспитания:

осознание духовных ценностей российского народа;

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности;

осознание личного вклада в построение устойчивого будущего;

ответственное отношение к своим родителям, созданию семьи на основе осознанного принятия ценностей семейной жизни в соответствии с традициями народов России.

4. Эстетического воспитания:

эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, труда, общественных отношений;

понимание эмоционального воздействия живой природы и её ценности;

готовность к самовыражению в разных видах искусства, стремление проявлять качества творческой личности.

5. Физического воспитания:

понимание и реализация здорового и безопасного образа жизни (здоровое питание, соблюдение гигиенических правил и норм, сбалансированный режим занятий и отдыха, регулярная физическая активность), бережного, ответственного и компетентного отношения к собственному физическому и психическому здоровью;

понимание ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознание последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения).

6. Трудового воспитания:

готовность к труду, осознание ценности мастерства, трудолюбие;

готовность к активной деятельности технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такую деятельность;

интерес к различным сферам профессиональной деятельности, умение совершать

осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию на протяжении всей жизни.

7. Экологического воспитания:

- экологически целесообразное отношение к природе как источнику жизни на Земле, основе её существования;
- повышение уровня экологической культуры: приобретение опыта планирования поступков и оценки их возможных последствий для окружающей среды;
- осознание глобального характера экологических проблем и путей их решения; способность использовать приобретаемые при изучении биологии знания и умения при решении проблем, связанных с рациональным природопользованием (соблюдение правил поведения в природе, направленных на сохранение равновесия в экосистемах, охрану видов, экосистем, биосферы);
- активное неприятие действий, приносящих вред окружающей природной среде, умение прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;
- наличие развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, готовности к участию в практической деятельности экологической направленности.

8. Ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, способствующего осознанию своего места в поликультурном мире;
- совершенствование языковой и читательской культуры как средства взаимодействия между людьми и познания мира;
- понимание специфики биологии как науки, осознания её роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы, человека и общества, в познании природных закономерностей и решении проблем сохранения природного равновесия;
- убеждённость в значимости биологии для современной цивилизации: обеспечения нового уровня развития медицины; создание перспективных биотехнологий, способных решать ресурсные проблемы развития человечества; поиска путей выхода из глобальных экологических проблем и обеспечения перехода к устойчивому развитию, рациональному использованию природных ресурсов и формированию новых стандартов жизни;
- заинтересованность в получении биологических знаний в целях повышения общей культуры, естественно-научной грамотности, как составной части функциональной грамотности обучающихся, формируемой при изучении биологии;
- понимание сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нём изменений; умение делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;
- способность самостоятельно использовать биологические знания для решения проблем в реальных жизненных ситуациях;
- осознание ценности научной деятельности, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе;
- готовность и способность к непрерывному образованию и самообразованию, к активному

получению новых знаний по биологии в соответствии с жизненными потребностями.

В процессе достижения личностных результатов освоения обучающимися программы среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

- *самосознания*, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;
- *саморегулирования*, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;
- *внутренней мотивации*, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;
- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении коммуникации, способность к сочувствию и сопереживанию;
- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения учебного предмета «Биология» включают: значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и др.); универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся; способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты освоения программы среднего общего образования должны отражать:

Овладение универсальными учебными познавательными действиями:

- 1) базовые логические действия:
- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- использовать при освоении знаний приёмы логического мышления (анализа, синтеза, сравнения, классификации, обобщения), раскрывать смысл биологических понятий (выделять их характерные признаки, устанавливать связи с другими понятиями);
- определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;
- использовать биологические понятия для объяснения фактов и явлений живой природы; строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять
 - закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;
- применять схемно-модельные средства для представления существенных связей и отношений в изучаемых биологических объектах, а также противоречий разного рода, выявленных в различных информационных источниках;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем;

2) базовые исследовательские действия:

- владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способностью и готовностью к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- использовать различные виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в учебных ситуациях, в том числе при создании учебных и социальных проектов;
- формировать научный тип мышления, владеть научной терминологией, ключевыми понятиями и методами;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
- давать оценку новым ситуациям, оценивать приобретённый опыт;
- осуществлять целенаправленный поиск переноса средств и способов действия в профессиональную среду;
- уметь переносить знания в познавательную и практическую области жизнедеятельности; уметь интегрировать знания из разных предметных областей;
- выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения;

3) действия по работе с информацией:

- ориентироваться в различных источниках информации (тексте учебного пособия, научнопопулярной литературе, биологических словарях и справочниках, компьютерных базах данных, в Интернете), анализировать информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость;
- формулировать запросы и применять различные методы при поиске и отборе биологической информации, необходимой для выполнения учебных задач;
- приобретать опыт использования информационно-коммуникативных технологий, совершенствовать культуру активного использования различных поисковых систем;
- самостоятельно выбирать оптимальную форму представления биологической информации (схемы, графики, диаграммы, таблицы, рисунки и др.);
- использовать научный язык в качестве средства при работе с биологической информацией: применять химические, физические и математические знаки и символы, формулы, аббревиатуру, номенклатуру, использовать и преобразовывать знаковосимволические средства наглядности;
- владеть навыками распознавания и защиты информации, информационной безопасности личности.

Овладение универсальными коммуникативными действиями:

общение:

осуществлять коммуникации во всех сферах жизни; активно участвовать в диалоге или

- дискуссии по существу обсуждаемой темы (умение задавать вопросы, высказывать суждения относительно выполнения предлагаемой задачи, учитывать интересы и согласованность позиций других участников диалога или дискуссии);
- распознавать невербальные средства общения, понимать значение социальных знаков, предпосылок возникновения конфликтных ситуаций; уметь смягчать конфликты и вести переговоры;
- владеть различными способами общения и взаимодействия; понимать намерения других людей, проявлять уважительное отношение к собеседнику и в корректной форме формулировать свои возражения;
- развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

2) совместная деятельность:

- понимать и использовать преимущества командной и индивидуальной работы при решении биологической проблемы, обосновывать необходимость применения групповых форм взаимодействия при решении учебной задачи;
- выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;
- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;
- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;
- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Овладение универсальными регулятивными действиями:

1) самоорганизация:

- использовать биологические знания для выявления проблем и их решения в жизненных и учебных ситуациях;
- выбирать на основе биологических знаний целевые и смысловые установки в своих действиях и поступках по отношению к живой природе, своему здоровью и здоровью окружающих;
- самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- самостоятельно составлять план решения проблемы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать ответственность за решение; оценивать приобретённый опыт;

способствовать формированию и проявлению широкой эрудиции в разных областях знаний, постоянно повышать свой образовательный и культурный уровень;

2) самоконтроль:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;
- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований; использовать приёмы рефлексии

для оценки ситуации, выбора верного решения; уметь оценивать риски и своевременно принимать решения по их снижению; принимать мотивы и аргументы других при анализе результатов деятельности;

3) принятие себя и других: принимать себя, понимая свои недостатки и достоинства; принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибки; развивать способность понимать мир с позиции другого человека.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ НА БАЗОВОМ УРОВНЕ

Предметные результаты освоения программы СОО по биологии на базовом уровне включают специфические для учебного предмета «Биология» научные знания, умения и способы действий по освоению, интерпретации и преобразованию знаний, виды деятельности по получению нового знания и применению знаний в различных учебных ситуациях, а также в реальных жизненных ситуациях, связанных с биологией. В программе предметные результаты представлены по годам обучения.

10 класс

Предметные результаты освоения учебного предмета «Биология» должны отражать:

- 1) сформированность знаний о месте и роли биологии в системе научного знания естественных наук, в формировании современной естественно-научной картины мира и научного мировоззрения; о вкладе российских и зарубежных учёных-биологов в развитие биологии; функциональной грамотности человека для решения жизненных задач; в познании законов природы и решении проблем рационального природопользования; о вкладе российских и зарубежных учёных в развитие биологии;
- 2) умение раскрывать содержание биологических терминов и понятий: жизнь, клетка, организм; метаболизм (обмен веществ превращение энергии), И (саморегуляция), уровневая организация живых систем, самовоспроизведение (репродукция), наследственность, изменчивость, рост и развитие; владение системой биологических знаний, которая включает: биологические теории (клеточная теория Т. Шванна, М. Шлейдена, Р. Вирхова; хромосомная теория наследственности Т. Моргана); учения (Н. И. Вавилова — о центрах многообразия и происхождения культурных растений); законы (единообразия потомков первого поколения, расшепления, чистоты гамет, независимого наследования Г. Менделя; гомологических рядов в наследственной изменчивости Н.И. Вавилова); принципы (комплементарности),

определять границы их применимости к живым системам;

3) умение владеть методами научного познания в биологии: наблюдение и описание живых систем, процессов и явлений; организация и проведение биологического эксперимента, выдвижение гипотезы; выявление зависимости между исследуемыми величинами, объяснение полученных результатов, использованных научных понятий, теорий и законов;

умение делать выводы на основании полученных результатов; владение основными методами научного познания, используемых в биологических исследованиях живых объектов (описание, измерение, наблюдение, эксперимент);

4) умение выделять существенные признаки вирусов, клеток прокариот и эукариот; одноклеточных и многоклеточных организмов; особенности процессов: обмена веществ и превращения энергии в клетке, фотосинтеза, пластического и энергетического обмена, хемосинтеза, митоза, мейоза, оплодотворения, размножения, индивидуального развития организма (онтогенез); автотрофного и гетеротрофного типов питания, фотосинтеза,

<u>гаметогенеза, эмбриогенеза, постэмбрионального развития, взаимодействия генов, гетерозиса; искусственного отбора;</u>

- 5) умение устанавливать взаимосвязи между органоидами клетки и их функциями, строением клеток разных тканей и их функциями; между органами и системами органов у растений, животных и человека и их функциями; между системами органов и их функциями, между этапами обмена веществ; этапами клеточного цикла и жизненных циклов организмов; этапами эмбрионального развития; генотипом и фенотипом, фенотипом и факторами среды обитания;
- 6) умение выявлять отличительные признаки живых систем, в том числе растений, животных и человека;
- 7) умение использовать соответствующие аргументы, биологическую терминологию и символику для доказательства родства организмов разных систематических групп;
- 8) умение применять полученные знания для объяснения биологических процессов и явлений, для принятия практических решений в повседневной жизни с целью обеспечения безопасности своего здоровья и здоровья окружающих людей, соблюдения норм грамотного поведения в окружающей природной среде; понимание необходимости использования достижений современной биологии и биотехнологий для рационального природопользования;
- 9) умение решать элементарные генетические задачи на моно- и дигибридное скрещивание, сцепленное наследование; составлять схемы моногибридного скрещивания для предсказания наследования признаков у организмов; умение решать биологические задачи; выявлять причинно-следственные связи между исследуемыми биологическими процессами и явлениями; делать выводы и прогнозы на основании полученных результатов;
- 10) умение выполнять лабораторные и практические работы, соблюдать правила при работе с учебным и лабораторным оборудованием;
- 11) умение критически оценивать и интерпретировать информацию биологического содержания, включающую псевдонаучные знания из различных источников (СМИ, научно-популярные материалы); этические аспекты современных исследований в биологии, медицине, биотехнологии; умение выдвигать гипотезы, проверять их экспериментальными средствами, формулируя цель исследования, анализировать полученные результаты и делать выводы;
- 12) умение создавать собственные письменные и устные сообщения, обобщая биологическую информацию из нескольких источников, грамотно использовать понятийный аппарат биологии.
- 13) умение участвовать в учебно-исследовательской работе по биологии, экологии и медицине, проводимой на базе школьных научных обществ, и публично представлять полученные результаты на ученических конференциях;
- 14) умение оценивать этические аспекты современных исследований в области биологии и медицины (клонирование, искусственное оплодотворение, направленное изменение генома и создание трансгенных организмов);
- 15) умение осуществлять осознанный выбор будущей профессиональной деятельности в области биологии, медицины, биотехнологии, ветеринарии, сельского хозяйства, пищевой промышленности; углублять познавательный интерес, направленный на осознанный выбор соответствующей профессии и продолжение биологического образования в учреждениях среднего профессионального и высшего образования.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «БИОЛОГИЯ»

Базовый уровень	Углубленный уровень
10 класс. 1 ч в неделю, всего 34 ч, из них 1 ч — резервное время	10 класс. 102 ч, из них 1 ч — резервное время
Тема 1. Биология как наука Биология как наука. Связь биологии с общественными, техническими и другими естественными науками, философией, этикой, эстетикой и правом. Роль биологии в формировании современной научной картины мира. Система биологических наук. Методы познания живой природы (наблюдение, эксперимент, описание, измерение, классификация, моделирование, статистическая обработка данных). Демонстрации: Портреты: Ч. Дарвин, Г. Мендель, Н. К. Кольцов, Дж. Уотсон и Ф. Крик. Таблицы и схемы: «Методы познания живой природы». Лабораторные и практические работы: Практическая работа № 1. «Использование различных методов при изучении биологических объектов».	Тема 1. Биология как наука Современная биология — комплексная наука. Краткая история развития биологии. Биологические науки и изучаемые ими проблемы. Фундаментальные, прикладные и поисковые научные исследования в биологии. Значение биологии в формировании современной естественно-научной картины мира. Профессии, связанные с биологией. Значение биологии в практической деятельности человека: медицине, сельском хозяйстве, промышленности, охране природы. Демонстрации Портреты: Аристотель, Теофраст, К. Линней, Ж. Б. Ламарк, Ч. Дарвин, У. Гарвей, Г. Мендель, В. И. Вернадский, И. П. Павлов, И. И. Мечников, Н. И. Вавилов, Н. В. Тимофеев-Ресовский, Дж. Уотсон, Ф. Крик, Д. К. Беляев. Таблицы и схемы: «Связь биологии с другими науками», «Система биологических наук».
Тема 2. Живые системы и их организация Живые системы (биосистемы) как предмет изучения биологии. Отличие живых систем от неорганической природы. Свойства биосистем и их разнообразие. Уровни организации биосистем: молекулярный, клеточный,	и упорядоченность структуры, открытость, самоорганизация, самовоспроизведение, раздражимость, изменчивость, рост и развитие.

тканевый, организменный, популяционно-видовой, экосистемный (биогеоценотический), биосферный.

Демонстрации:

Таблицы и схемы: «Основные признаки жизни», «Уровни организации живой природы».

Оборудование: модель молекулы ДНК.

Тема 3. Химический состав и строение клетки

Химический состав клетки. Химические элементы: макроэлементы, микроэлементы. Вода и минеральные вещества.

Функции воды и минеральных веществ в клетке. Поддержание осмотического баланса.

Белки. Состав и строение белков. Аминокислоты — мономеры белков. Незаменимые и заменимые аминокислоты. Аминокислотный состав. Уровни структуры белковой молекулы (первичная, вторичная, третичная и четвертичная структура). Химические свойства белков. Биологические функции белков.

(биогеоценотический), биосферный. Процессы, происходящие в живых системах. Основные признаки живого. Жизнь как форма существования материи. Науки, изучающие живые системы на разных уровнях организации.

Изучение живых систем. Методы биологической науки. Наблюдение, измерение, эксперимент, систематизация, метаанализ. Понятие о зависимой и независимой переменной. Планирование эксперимента. Постановка и проверка гипотез. Нулевая гипотеза. Понятие выборки и её достоверность. Разброс в биологических данных. Оценка достоверности полученных результатов. Причины искажения результатов эксперимента. Понятие статистического теста.

<u>Таблицы и схемы:</u> «Основные признаки жизни», «Биологические системы», «Свойства живой материи», «Уровни организации живой природы», «Строение животной клетки», «Ткани животных», «Системы органов человеческого организма», «Биогеоценоз», «Биосфера», «Методы изучения живой природы».

<u>Оборудование</u>: лабораторное оборудование для проведения наблюдений, измерений, экспериментов.

Лабораторные и практические работы

Практическая работа «Использование различных методов при изучении живых систем».

Биология клетки

Клетка — структурно-функциональная единица живого. <u>История открытия клетки. Работы Р. Гука, А. Левенгука. Клеточная теория (Т. Шванн, М. Шлейден, Р. Вирхов).</u> Основные положения современной клеточной теории.

Методы молекулярной и клеточной биологии: микроскопия, хроматография, электрофорез, метод меченых атомов, дифференциальное центрифугирование, культивирование клеток. Изучение фиксированных клеток. Электронная микроскопия. Конфокальная микроскопия. Витальное (прижизненное) изучение клеток.

Демонстрации

Портреты: Р. Гук, А. Левенгук, Т. Шванн, М. Шлейден,

Ферменты — биологические катализаторы. Строение фермента: активный центр, субстратная специфичность. Коферменты. Витамины. Отличия ферментов от неорганических катализаторов.

Углеводы: моносахариды (глюкоза, рибоза и дезоксирибоза), дисахариды (сахароза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). Биологические функции углеводов.

Липиды: триглицериды, фосфолипиды, стероиды. Гидрофильно-гидрофобные свойства. Биологические функции липидов. Сравнение углеводов, белков и липидов как источников энергии.

Нуклеиновые кислоты: ДНК и РНК. Нуклеотиды — мономеры нуклеиновых кислот. Строение и функции ДНК. Строение и функции РНК. Виды РНК. АТФ: строение и функции.

Цитология — наука о клетке. Клеточная теория — пример взаимодействия идей и фактов в научном познании. Методы изучения клетки.

Клетка как целостная живая система. Общие признаки клеток: замкнутая наружная мембрана, молекулы ДНК как генетический аппарат, система синтеза белка.

Типы клеток: эукариотическая и прокариотическая. Особенности строения прокариотической клетки. Клеточная стенка бактерий. Строение эукариотической клетки. Основные отличия растительной, животной и грибной клетки.

Поверхностные структуры клеток — клеточная стенка, гликокаликс, их функции. Плазматическая мембрана, её свойства и функции. Цитоплазма и её органоиды. Одномембранные органоиды клетки: ЭПС, аппарат Гольджи, лизосомы. Полуавтономные органоиды клетки: митохондрии, пластиды. Происхождение митохондрий и пластид. Виды пластид. Немембранные органоиды клетки: рибосомы,

Р. Вирхов, К. М. Бэр.

<u>Таблицы и схемы:</u> «Световой микроскоп», «Электронный микроскоп», «История развития методов микроскопии».

<u>Оборудование:</u> световой микроскоп; микропрепараты растительных, животных и бактериальных клеток.

Лабораторные и практические работы

 Π рактическая работа «Изучение методов клеточной биологии (хроматография, электрофорез, дифференциальное центрифугирование, Π Π P)».

Химическая организация клетки

Химический состав клетки. Макро-, микро- и ультрамикроэлементы. Вода и её роль как растворителя, реагента, участие в структурировании клетки, теплорегуляции. Минеральные вещества клетки, их биологическая роль. Роль катионов и анионов в клетке.

Органические вещества клетки. Биологические полимеры. Белки.

Аминокислотный состав белков. Структуры белковой молекулы. Первичная структура белка, пептидная связь. Вторичная, третичная, четвертичная структуры. Денатурация. Свойства белков. *Классификация белков*. Биологические функции белков. *Прионы*.

Углеводы. Моносахариды, дисахариды, олигосахариды и полисахариды. Общий план строения и физико-химические свойства углеводов. Биологические функции углеводов.

Липиды. Гидрофильно-гидрофобные свойства. Классификация липидов. Триглицериды, фосфолипиды, воски, стероиды. Биологические функции липидов. Общие свойства биологических мембран — текучесть, способность к самозамыканию, полупроницаемость.

Нуклеиновые кислоты. ДНК и РНК. Строение нуклеиновых кислот. Нуклеотиды. Принцип комплементарности. Правило Чаргаффа. Структура

ДНК — двойная спираль. Местонахождение и биологические функции ДНК. Виды РНК. Функции РНК в клетке.

Строение молекулы АТФ. <u>Макроэргические связи в молекуле АТФ.</u> Биологические функции АТФ. Восстановленные переносчики, их функции в клетке. Другие нуклеозидтрифосфаты (НТФ). Секвенирование ДНК.

клеточный центр, центриоли, реснички, жгутики. Функции органоидов клетки. Включения.

Ядро — регуляторный центр клетки. Строение ядра: ядерная оболочка, кариоплазма, хроматин, ядрышко. Хромосомы.

Транспорт веществ в клетке.

Демонстрации:

Портреты: А. Левенгук, Р. Гук, Т. Шванн, М. Шлейден, Р. Вирхов, Дж. Уотсон, Ф. Крик, М. Уилкинс, Р. Франклин, К. М. Бэр.

Диаграммы: «Распределение химических элементов в неживой природе», «Распределение химических элементов в живой природе».

Таблицы и схемы: «Периодическая таблица химических элементов», «Строение молекулы воды», «Биосинтез белка», «Строение молекулы белка», «Строение фермента», «Нуклеиновые кислоты. ДНК», «Строение молекулы АТФ», «Строение эукариотической клетки», «Строение животной клетки», «Строение растительной клетки», «Строение прокариотической клетки», «Строение ядра клетки», «Углеводы», «Липиды».

Оборудование: световой микроскоп, оборудование для проведения наблюдений, измерений, экспериментов; микропрепараты растительных, животных и бактериальных клеток.

Лабораторные и практические работы:

Лабораторная работа № 1. «Изучение каталитической активности ферментов (на примере амилазы или каталазы)».

Лабораторная работа № 2. «Изучение строения клеток растений, животных и бактерий под микроскопом на готовых микропрепаратах и их описание».

Методы геномики, транскриптомики, протеомики.

Структурная биология: биохимические и биофизические исследования состава и пространственной структуры биомолекул. Моделирование структуры и функций биомолекул и их комплексов. Компьютерный дизайн и органический синтез биомолекул и их неприродных аналогов.

Демонстрации

<u>Портреты:</u> Л. Полинг, Дж. Уотсон, Ф. Крик, М. Уилкинс, Р. Франклин, Ф. Сэнгер, С. Прузинер.

<u>Диаграммы:</u> «Распределение химических элементов в неживой природе», «Распределение химических элементов в живой природе».

<u>Таблицы и схемы:</u> «Периодическая таблица химических элементов», «Строение молекулы воды», «Вещества в составе организмов», «Строение молекулы белка», «Структуры белковой молекулы», «Строение молекул углеводов», «Строение молекул липидов», «Нуклеиновые кислоты», «Строение молекулы АТФ».

Оборудование: химическая посуда и оборудование.

Лабораторные и практические работы:

- 1. Лабораторная работа «Обнаружение белков с помощью качественных реакций».
- 2. Лабораторная работа «Исследование нуклеиновых кислот, выделенных из клеток различных организмов».

Строение и функции клетки

Типы клеток: эукариотическая и прокариотическая. Структурнофункциональные образования клетки.

Строение прокариотической клетки. <u>Клеточная стенка бактерий и архей.</u> Особенности строения гетеротрофной и автотрофной прокариотических клеток. Место и роль прокариот в биоценозах.

Строение и функционирование эукариотической клетки. Плазматическая мембрана (плазмалемма). Структура плазматической мембраны. Транспорт веществ через плазматическую мембрану: пассивный (диффузия, облегчённая диффузия), активный (первичный и вторичный активный транспорт). Полупроницаемость мембраны. Работа натрийкалиевого насоса.

Эндоцитоз: пиноцитоз, фагоцитоз. Экзоцитоз. Клеточная стенка. Структура и функции клеточной стенки растений, грибов.

Цитоплазма. <u>Цитозоль. Цитоскелет. Движение цитоплазмы.</u> Органоиды клетки. Одномембранные органоиды клетки: эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, их строение и функции. <u>Взаимосвязь одномембранных органоидов клетки. Строение гранулярного ретикулума.</u> Механизм направления белков в ЭПС. Синтез растворимых белков. Синтез клеточных мембран. Гладкий (агранулярный) эндоплазматический ретикулум. Секреторная функция аппарата Гольджи. Модификация белков в аппарате Гольджи. Сортировка белков в аппарате Гольджи. Транспорт веществ в клетке. Вакуоли растительных клеток. <u>Клеточный сок.</u> Тургор.

Полуавтономные органоиды клетки: митохондрии, пластиды. *Происхождение митохондрий и пластид*. *Симбиогенез* (К. С. Мережковский, Л. Маргулис). Строение и функции митохондрий и пластид. *Первичные, вторичные и сложные пластиды* фотосинтезирующих эукариот. Хлоропласты, хромопласты, лейкопласты высших растений.

Немембранные органоиды клетки Строение и функции немембранных органоидов клетки. Рибосомы. <u>Промежуточные филаменты.</u> <u>Микрофиламенты.</u> <u>Актиновые микрофиламенты. Мышечные клетки.</u> <u>Актиновые компоненты немышечных клеток. Микротрубочки. Клеточный центр. Строение и движение жгутиков и ресничек. Микротрубочки цитоплазмы. Центриоль. Белки, ассоциированные с микрофиламентами и микротрубочками. Моторные белки.</u>

Ядро. Оболочка ядра, хроматин, кариоплазма, ядрышки, их строение и функции. <u>Ядерный белковый матрикс. Пространственное расположение хромосом в интерфазном ядре.</u> Эухроматин и гетерохроматин. <u>Белки хроматина</u> — гистоны. Динамика ядерной оболочки в митозе. Ядерный транспорт.

Клеточные включения. Сравнительная характеристика клеток эукариот (растительной, животной, грибной).

Демонстрации

Тема 4. Жизнедеятельность клетки

Обмен веществ, или метаболизм. Ассимиляция (пластический обмен) и диссимиляция (энергетический обмен) — две стороны единого процесса метаболизма. Роль законов сохранения веществ и энергии в понимании метаболизма. Типы обмена веществ: автотрофный и гетеротрофный. Роль ферментов в обмене веществ и превращении энергии в клетке.

Фотосинтез. Световая и темновая фазы фотосинтеза. Реакции фотосинтеза. Эффективность фотосинтеза. Значение фотосинтеза для жизни на Земле. Влияние условий среды на фотосинтез и способы повышения его продуктивности у культурных растений

Хемосинтез. Хемосинтезирующие бактерии. Значение

Портреты: К. С. Мережковский, Л. Маргулис.

<u>Таблицы и схемы:</u> «Строение эукариотической клетки», «Строение животной клетки», «Строение растительной клетки», «Строение митохондрии», «Ядро», «Строение прокариотической клетки».

<u>Оборудование:</u> световой микроскоп; микропрепараты растительных, животных клеток; микропрепараты бактериальных клеток.

Лабораторные и практические работы

- 1. Лабораторная работа «Изучение строения клеток различных организмов».
- 2. <u>Практическая работа «Изучение свойств клеточной мембраны».</u>
- 3. Лабораторная работа «Исследование плазмолиза и деплазмолиза в растительных клетках».
- 4. Практическая работа «Изучение движения цитоплазмы в растительных клетках».

Обмен веществ и превращение энергии в клетке

Ассимиляция и диссимиляция — две стороны метаболизма. Типы обмена веществ: автотрофный и гетеротрофный. Участие кислорода в обменных процессах. Энергетическое обеспечение клетки: превращение АТФ в обменных процессах. Ферментативный характер реакций клеточного метаболизма. Ферменты, их строение, свойства и механизм действия. Коферменты. Отличия ферментов от неорганических катализаторов. Белки-активаторы и белки-ингибиторы. Зависимость скорости ферментативных реакций от различных факторов.

Первичный синтез органических веществ в клетке. Фотосинтез. Аноксигенный и оксигенный фотосинтез у бактерий. Светособирающие пигменты и пигменты реакционного центра. Роль хлоропластов в процессе фотосинтеза. Световая и темновая фазы. Фотосинтеза. Влияние различных факторов на скорость фотосинтеза. Значение фотосинтеза.

Хемосинтез. Разнообразие организмов-хемосинтетиков: нитрифицирующие бактерии, железобактерии, серобактерии, водородные

хемосинтеза для жизни на Земле.

Энергетический обмен в клетке. Расщепление веществ, выделение и аккумулирование энергии в клетке. Этапы энергетического обмена. Гликолиз. Брожение и его виды. Кислородное окисление, или клеточное дыхание. Окислительное фосфорилирование. Эффективность энергетического обмена.

Реакции матричного синтеза. Генетическая информация и ДНК. Реализация генетической информации в клетке. Генетический код и его свойства. Транскрипция — матричный синтез РНК. Трансляция — биосинтез белка. Этапы трансляции. Кодирование аминокислот. Роль рибосом в биосинтезе белка.

Неклеточные формы жизни — вирусы. История открытия вирусов (Д.И. Ивановский). Особенности строения и жизненный цикл вирусов. Бактериофаги. Болезни растений, животных и человека, вызываемые вирусами. Вирус иммуно-дефицита человека (ВИЧ) — возбудитель СПИДа. Обратная транскрипция, ревертаза и интеграза. Профилактика распространения вирусных заболеваний.

Демонстрации:

Портреты: Н. К. Кольцов, Д. И. Ивановский, К. А. Тимирязев.

Таблицы и схемы: «Типы питания», «Метаболизм», «Митохондрия», «Энергетический обмен», «Хлоропласт», «Фотосинтез», «Строение ДНК», «Строение и функционирование гена», «Синтез белка», «Генетический код», «Вирусы», «Бактериофаги», «Строение и жизненный цикл вируса

бактерии. Значение хемосинтеза.

Анаэробные организмы. Виды брожения. <u>Продукты брожения и их использование человеком.</u> Анаэробные микроорганизмы как объекты биотехнологии и возбудители болезней.

Аэробные организмы. Этапы энергетического обмена. Подготовительный этап. Гликолиз — бескислородное расщепление глюкозы.

Биологическое окисление, или клеточное дыхание. Роль митохондрий в процессах биологического окисления. <u>Циклические реакции.</u> Окислительное фосфорилирование. Энергия мембранного градиента протонов. Синтез АТФ: работа протонной АТФ-синтазы. Преимущества аэробного пути обмена веществ перед анаэробным. Эффективность энергетического обмена.

Демонстрации

<u>Портреты:</u> Дж. Пристли, К. А. Тимирязев, С. Н. Виноградский, В. А. Энгельгардт, П. Митчелл, Г. А. Заварзин.

<u>Таблицы и схемы:</u> «Фотосинтез», «Энергетический обмен», «Биосинтез белка», «Строение фермента», «Хемосинтез».

<u>Оборудование:</u> световой микроскоп; оборудование для приготовления постоянных и временных микропрепаратов.

Лабораторные и практические работы

- 1. Лабораторная работа «Изучение каталитической активности ферментов (на примере амилазы или каталазы)».
- 2. Лабораторная работа «Изучение ферментативного расщепления пероксида водорода в растительных и животных клетках».
- 3. <u>Лабораторная работа «Сравнение процессов фотосинтеза</u> и хемосинтеза».
- 4. <u>Лабораторная работа «Сравнение процессов брожения</u> и дыхания».

Наследственная информация и реализация её в клетке

Реакции матричного синтеза. Принцип комплементарности в реакциях матричного синтеза. Реализация наследственной информации. Генетический код, его свойства. Транскрипция — матричный синтез РНК. Принципы транскрипции: комплементарность, антипараллельность,

СПИДа, бактериофага», «Репликация ДНК».

Оборудование: модели-аппликации «Удвоение ДНК и транскрипция», «Биосинтез белка», «Строение клетки»; модель структуры ДНК.

асимметричность. <u>Созревание матричных РНК в эукариотической клетке.</u> <u>Некодирующие РНК.</u>

Трансляция и её этапы. Участие транспортных РНК в биосинтезе белка. <u>Условия биосинтеза белка.</u> Кодирование аминокислот. Роль рибосом в биосинтезе белка.

Современные представления о строении генов. *Организация генома* у прокариот и эукариот. *Регуляция активности генов у прокариот*. *Гипотеза оперона (Ф. Жакоб, Ж. Мано)*. Молекулярные механизмы экспрессии генов у эукариот. Роль хроматина в регуляции работы генов. *Регуляция обменных процессов в клетке. Клеточный гомеостаз*.

Вирусы — неклеточные формы жизни и облигатные паразиты. Строение простых и сложных вирусов, ретровирусов, бактериофагов. <u>Жизненный цикл ДНК-содержащих</u> вирусов, РНК-содержащих вирусов, бактериофагов. Обратная транскрипция, ревертаза, интеграза.

Вирусные заболевания человека, животных, растений. СПИД, COVID-19, социальные и медицинские проблемы.

Биоинформатика: интеграция и анализ больших массивов («bigdata») структурных биологических данных. Нанотехнологии в биологии и медицине. Программируемые функции белков. Способы доставки лекарств.

Демонстрации

Портреты: Н. К. Кольцов, Д. И. Ивановский.

<u>Таблицы и схемы:</u> «Биосинтез белка», «Генетический код», «Вирусы», «Бактериофаги».

Лабораторные и практические работы

Практическая работа «Создание модели вируса».

Тема 5. Размножение и индивидуальное развитие организмов

Клеточный цикл, или жизненный цикл клетки. Интерфаза и митоз. Процессы, протекающие в интерфазе. Репликация — реакция матричного синтеза ДНК. Строение хромосом. Хромосомный набор — кариотип. Диплоидный и гаплоидный

Жизненный цикл клетки

Клеточный цикл, его периоды и регуляция. Интерфаза и митоз. Особенности процессов, протекающих в интерфазе. Подготовка клетки к делению. Пресинтетический (постмитотический), синтетический и постсинтетический (премитотический) периоды интерфазы.

Матричный синтез ДНК — репликация. Принципы репликации ДНК:

хромосомные наборы. Хроматиды. Цитологические основы размножения и индивидуального развития организмов.

Деление клетки — митоз. Стадии митоза. Процессы, происходящие на разных стадиях митоза. Биологический смысл митоза.

Программируемая гибель клетки — апоптоз.

Формы размножения организмов: бесполое и половое. Виды бесполого размножения: деление надвое, почкование одно- и многоклеточных, спорообразование, вегетативное размножение. Искусственное клонирование организмов, его значение для селекции.

Половое размножение, его отличия от бесполого.

Мейоз. Стадии мейоза. Процессы, происходящие на стадиях мейоза. Поведение хромосом в мейозе. Кроссинговер. Биологический смысл и значение мейоза.

Гаметогенез — процесс образования половых клеток у животных. Половые железы: семенники и яичники. Образование и развитие половых клеток — гамет (сперматозоид, яйцеклетка) — сперматогенез и оогенез. Особенности строения яйцеклеток и сперматозоидов. Оплодотворение. Партеногенез.

Индивидуальное развитие (онтогенез). Эмбриональное развитие (эмбриогенез). Этапы эмбрионального развития у дробление. позвоночных животных: гаструляция, Постэмбриональное Типы органогенез. развитие. постэмбрионального развития: прямое, непрямое (личиночное). Влияние среды на развитие организмов; факторы, способные вызывать врождённые уродства.

Рост и развитие растений. Онтогенез цветкового растения: строение семени, стадии развития.

Демонстрации:

Таблицы и схемы: «Формы размножения организмов», «Двойное оплодотворение у иветковых растений»,

комплементарность, полуконсервативный синтез, антипараллельность. Механизм репликации ДНК. Хромосомы. Строение хромосом. Теломеры и теломераза. Хромосомный набор клетки— кариотип. Диплоидный и гаплоидный наборы хромосом. Гомологичные хромосомы. Половые хромосомы.

Деление клетки — митоз. Стадии митоза и происходящие в них процессы. *Типы митоза. Кариокинез и цитокинез*. Биологическое значение митоза.

Регуляция митотического цикла клетки. Программируемая клеточная гибель — апоптоз.

<u>Клеточное ядро, хромосомы, функциональная геномика.</u> Механизмы пролиферации, дифференцировки, старения и гибели клеток. «Цифровая клетка» — биоинформатические модели функционирования клетки.

Демонстрации

<u>Таблицы и схемы:</u> «Жизненный цикл клетки», «Митоз», «Строение хромосом», «Репликация ДНК».

<u>Оборудование:</u> световой микроскоп; микропрепараты: «Митоз в клетках корешка лука».

Лабораторные и практические работы

- 1. Лабораторная работа «Изучение хромосом на готовых микропрепаратах».
- 2. Лабораторная работа «Наблюдение митоза в клетках кончика корешка лука (на готовых микропрепаратах)».

Строение и функции организмов

<u>Биологическое разнообразие организмов. Одноклеточные, колониальные,</u> многоклеточные организмы.

<u>Особенности строения и жизнедеятельности одноклеточных организмов.</u> <u>Бактерии, археи, одноклеточные грибы, одноклеточные водоросли, другие</u> протисты. Колониальные организмы.

<u>Взаимосвязь частей многоклеточного организма. Ткани, органы и системы органов. Организм как единое целое. Гомеостаз.</u>

<u>Ткани растений. Типы растительных тканей: образовательная, покровная, проводящая, основная, механическая. Особенности строения,</u>

«Вегетативное размножение растений», «Деление клетки бактерий», «Строение половых клеток», «Строение хромосомы», «Клеточный цикл», «Репликация ДНК», «Митоз», «Мейоз», «Прямое и непрямое развитие», «Гаметогенез у млекопитающих и человека», «Основные стадии онтогенеза».

Оборудование: микроскоп, микропрепараты «Сперматозоиды млекопитающего», «Яйцеклетка млекопитающего», «Кариокинез в клетках корешка лука», магнитная модель-аппликация «Деление клетки»; модель ДНК, модель метафазной хромосомы.

Лабораторные и практические работы:

Лабораторная работа № 3. «Наблюдение митоза в клетках кончика корешка лука на готовых микропрепаратах».

Лабораторная работа № 4. «Изучение строения половых клеток на готовых микропрепаратах».

функций и расположения тканей в органах растений.

<u>Ткани животных и человека. Типы животных тканей: эпителиальная, соединительная, мышечная, нервная. Особенности строения, функций и расположения тканей в органах животных и человека.</u>

<u>Органы. Вегетативные и генеративные органы растений. Органы и системы органов животных и человека. Функции органов и систем органов.</u>

<u>Опора тела организмов. Каркас растений. Скелеты одноклеточных и многоклеточных животных. Наружный и внутренний скелет. Строение и типы соединения костей.</u>

Движение организмов. Движение одноклеточных организмов: амёбоидное, жгутиковое, ресничное. Движение многоклеточных растений: тропизмы и настии. Движение многоклеточных животных и человека: мышечная система. Рефлекс. Скелетные мышцы и их работа.

<u>Питание организмов. Поглощение воды, углекислого газа и минеральных веществ растениями. Питание животных.</u> Внутриполостное и внутриклеточное пищеварение. Питание позвоночных животных. Отделы пищеварительного тракта. Пищеварительные железы. Пищеварительная система чело-века.

Дыхание организмов. Дыхание растений. Дыхание животных. Диффузия газов через поверхность клетки. Кожное дыхание. Дыхательная поверхность. Жаберное и лёгочное дыхание. Дыхание позвоночных животных и человека. Эволюционное усложнение строения лёгких позвоночных животных. Дыхательная система человека. Механизм вентиляции лёгких у птиц и млекопитающих. Регуляция дыхания. Дыхательные объёмы.

Транспорт веществ у организмов. Транспортные системы растений. Транспорт веществ у животных. Кровеносная система и её органы. Кровеносная система позвоночных животных и человека. Сердце, кровеносные сосуды и кровь. Круги кровообращения. Эволюционные усложнения строения кровеносной системы позвоночных животных. Работа сердца и её регуляция.

Выделение у организмов. Выделение у растений. Выделение у животных.

Сократительные вакуоли. Органы выделения. Фильтрация, секреция и обратное всасывание как механизмы работы органов выделения. Связь полости тела с кровеносной и выделительной системами. Выделение у позвоночных животных и человека. Почки. Строение и функционирование нефрона. Образование мочи у человека.

Защита у организмов. Защита у одноклеточных организмов. Споры бактерий и цисты простейших. Защита у многоклеточных растений. Кутикула. Средства пассивной и химической защиты. Фитонциды.

Защита у многоклеточных животных. Покровы и их производные. Защита организма от болезней. Иммунная система человека. Клеточный и гуморальный иммунитет. Врождённый и приобретённый специфический иммунитет. Теория клонально-селективного иммунитета (П. Эрлих, Ф. М. Бернет, С. Тонегава). Воспалительные ответы организмов. Роль врождённого иммунитета в развитии системных заболеваний.

<u>Раздражимость</u> и регуляция у организмов. <u>Раздражимость</u> у одноклеточных организмов. Таксисы. <u>Раздражимость</u> и регуляция у растений. <u>Ростовые вещества и их значение.</u>

Нервная система и рефлекторная регуляция у животных. Нервная система и её отделы. Эволюционное усложнение строения нервной системы у животных. Отделы головного мозга позвоночных животных. Рефлекс и рефлекторная дуга. Безусловные и условные рефлексы.

<u>Гуморальная регуляция и эндокринная система животных и человека.</u>
<u>Железы эндокринной системы и их гормоны. Действие гормонов.</u>
<u>Взаимосвязь нервной и эндокринной систем. Гипоталамо-гипофизарная система.</u>

Демонстрации

Портрет: И. П. Павлов.

Таблицы и схемы: «Одноклеточные водоросли», «Многоклеточные водоросли», «Бактерии», «Простейшие», «Органы цветковых растений», «Системы органов позвоночных животных», «Внутреннее строение насекомых», «Ткани растений», «Корневые системы», «Строение стебля», «Строение листовой пластинки», «Ткани животных», «Скелет человека», «Пищеварительная система», «Кровеносная система», «Дыхательная

«Нервная система». «Кожа». «Мышечная система» система» «Выделительная система», «Эндокринная система», «Строение мышиы», «Кишечнополостные». «Схема питания растений». «Иммунитет». «Кровеносные системы позвоночных животных», «Строение гидры», «Строение планарии», «Внутреннее строение дождевого червя», «Нервная «Нервная система лягушки». «Нервная система система рыб». «Нервная пресмыкающихся». «Нервная система птии». система млекопитающих», «Нервная система человека», «Рефлекс».

Оборудование: световой микроскоп; микропрепараты одноклеточных организмов; микропрепараты тканей; раковины моллюсков; коллекции насекомых, иглокожих; живые экземпляры комнатных растений; гербарии растений разных отделов; влажные препараты животных; скелеты позвоночных; коллекции беспозвоночных животных; скелет человека; оборудование для демонстрации почвенного и воздушного питания растений, расщепления крахмала и белков под действием ферментов; оборудование для демонстрации опытов по измерению жизненной ёмкости лёгких, механизма дыхательных движений; модели головного мозга различных животных.

Лабораторные и практические работы

- 1. Лабораторная работа «Изучение тканей растений».
- 2. Лабораторная работа «Изучение тканей животных».

Размножение и развитие организмов

Формы размножения организмов: бесполое (включая вегетативное) и половое. Виды бесполого размножения: почкование, споруляция, фрагментация, клонирование.

Половое размножение. Половые клетки, или гаметы. Мейоз. Стадии мейоза. Поведение хромосом в мейозе. Кроссинговер. Биологический смысл мейоза и полового процесса. Мейоз и его место в жизненном цикле организмов.

<u>Предзародышевое развитие. Гаметогенез у животных. Половые железы.</u> Образование и развитие половых клеток. Сперматогенез и оогенез. Строение половых клеток.

Оплодотворение и эмбриональное развитие животных. Способы оплодотворения: наружное, внутреннее. Партеногенез.

Индивидуальное развитие организмов (онтогенез). Эмбриология — наука о развитии организмов. Морфогенез — одна из главных проблем эмбриологии. Концепция морфогенов и модели морфогенеза. Стадии эмбриогенеза животных (на примере лягушки). Дробление. Типы дробления. Детерминированное и недерминированное дробление. Бластула, типы бластул. Особенности дробления млекопитающих. Зародышевые листки (гаструляция). Закладка органов и тканей из зародышевых листков. Взаимное влияние частей развивающегося зародыша (эмбриональная индукция). Закладка плана строения животного как результат иерархических взаимодействий генов. Влияние на эмбриональное развитие различных факторов окружающей среды.

Рост и развитие животных. Постэмбриональный период. Прямое и непрямое развитие. Развитие с метаморфозом у беспозвоночных и позвоночных животных. Биологическое значение прямого и непрямого развития, их распространение в природе. Типы роста животных. Факторы регуляции роста животных и человека. Стадии постэмбрионального развития у животных и человека. Периоды онтогенеза человека. Старение и смерть как биологические процессы.

Размножение и развитие растений. Гаметофит и спорофит. Мейоз в жизненном цикле растений. Образование спор в процессе мейоза. Гаметогенез у растений. Оплодотворение и развитие растительных организмов. Двойное оплодотворение у цветковых растений. Образование и развитие семени.

Механизмы регуляции онтогенеза у растений и животных.

Демонстрации

Портреты: С. Г. Навашин, Х. Шпеман.

<u>Таблицы и схемы:</u> «Вегетативное размножение», «Типы бесполого размножения», «Размножение хламидомонады», «Размножение эвглены», «Размножение гидры», «Мейоз», «Хромосомы», «Гаметогенез», «Строение яйцеклетки и сперматозоида», «Основные стадии онтогенеза», «Прямое и непрямое развитие», «Развитие майского жука», «Развитие саранчи»,

Тема 6. Наследственность и изменчивость организмов

Предмет и задачи генетики. История развития генетики. Роль цитологии и эмбриологии в становлении генетики. Вклад российских и зарубежных учёных в развитие генетики. Методы генетики (гибридологический, цитогенетический, молекулярно-генетический). Основные генетические понятия. Генетическая символика, используемая в схемах скрещиваний.

Закономерности наследования признаков, установленные Г. Менделем. Моногибридное скрещивание. Закон едино-образия гибридов первого поколения. Правило доминирования. Закон расщепления признаков. Гипотеза чистоты гамет. Полное и неполное доминирование.

Дигибридное скрещивание. Закон независимого наследования признаков. Цитогенетические основы дигибридного скрещивания. Анализирующее скрещивание. Использование анализирующего скрещивания для определения генотипа особи.

Сцепленное наследование признаков. Работа Т. Моргана по сцепленному наследованию генов. Нарушение сцепления

«Развитие лягушки», «Двойное оплодотворение у цветковых растений», «Строение семян однодольных и двудольных растений», «Жизненный цикл морской капусты», «Жизненный цикл папоротника», «Жизненный цикл сосны».

<u>Оборудование:</u> световой микроскоп; микропрепараты яйцеклеток и сперматозоидов; модель «Цикл развития лягушки».

Лабораторные и практические работы

- 1. Лабораторная работа «Изучение строения половых клеток на готовых микропрепаратах».
- 2. Практическая работа «Выявление признаков сходства зародышей позвоночных животных».
- 3. Лабораторная работа «Строение органов размножения высших растений».

Генетика — наука о наследственности и изменчивости организмов

История становления и развития генетики как науки. Работы Γ . Менделя, Γ . Де Фриза, Γ . Моргана. Роль отечественных учёных в развитии генетики. Работы Н. К. Кольцова, Н. И. Вавилова, А. Н. Белозерского, Γ . Д. Карпеченко, Ю. А. Филипченко, Н. В. Тимофеева-Ресовского.

Основные генетические понятия и символы. Гомологичные хромосомы, аллельные гены, альтернативные признаки, доминантный и рецессивный признак, гомозигота, гетерозигота, чистая линия, гибриды, генотип, фенотип. Основные методы генетики: гибридологический, цитологический, молекулярно-генетический.

Демонстрации

<u>Портреты:</u> Г. Мендель, Г. Де Фриз, Т. Морган, Н. К. Кольцов, Н. И. Вавилов, А. Н. Белозерский, Г. Д. Карпеченко, Ю. А. Филипченко, Н. В. Ти-мофеев-Ресовский.

Таблицы и схемы: «Методы генетики», «Схемы скрещивания».

Лабораторные и практические работы

Лабораторная работа «Дрозофила как объект генетических исследований».

Закономерности наследственности (10 ч)

генов в результате кроссинговера.

Хромосомная теория наследственности. Генетические карты. Генетика пола. Хромосомное определение пола. Аутосомы и половые хромосомы. Гомогаметные и гетерогаметные организмы. Наследование признаков, сцепленных с полом.

Изменчивость. Виды изменчивости: ненаследственная и наследственная. Роль среды в ненаследственной изменчивости. Характеристика модификационной изменчивости. Вариационный ряд и вариационная кривая. Норма реакции признака. Количественные и качественные признаки и их норма реакции. Свойства модификационной изменчивости.

Наслелственная. или генотипическая. изменчивость. Комбинативная изменчивость. Мейоз и половой процесс комбинативной изменчивости. Мутанионная основа Классификация мутаций: изменчивость. генные. хромосомные, геномные. Частота и причины мутаций. Мутагенные факторы. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова.

Внеядерная наследственность и изменчивость.

Генетика человека. Кариотип человека. Основные методы генетики человека: генеалогический. близненовый. биохимический. питогенетический. молекулярногенетический. Современное определение генотипа: полногеномное секвенирование, генотипирование, в том числе с помощью ПЦР-анализа. Наследственные заболевания человека: генные болезни, болезни с наследственной предрасположенностью, хромосомные болезни. Соматические и генеративные мутации. Стволовые клетки. Принципы здорового образа жизни, диагностики, профилактики и лечения генетических болезней. Медикогенетическое консультирование. Значение медицинской генетики в предотвращении и лечении генетических

Моногибридное скрещивание. Первый закон Менделя — закон единообразия гибридов первого поколения. Правило доминирования. Второй закон Менделя — закон расщепления признаков. Цитологические основы моногибридного скрещивания. Гипотеза чистоты гамет.

Анализирующее скрещивание. Промежуточный характер наследования. Расщепление признаков при неполном доминировании.

Дигибридное скрещивание. Третий закон Менделя — закон независимого наследования признаков. Цитологические основы дигибридного скрещивания.

Сцепленное наследование признаков. Работы Т. Моргана. Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности.

Генетика пола. Хромосомный механизм определения пола. Аутосомы и половые хромосомы. Гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом.

Генотип как целостная система. Плейотропия — множественное действие гена. Множественный аллелизм. Взаимодействие неаллельных генов. Комплементарность. Эпистаз. Полимерия.

Генетический контроль развития растений, животных и человека, а также физиологических процессов, поведения и когнитивных функций. Генетические механизмы симбиогенеза, механизмы взаимодействия «хозяин — паразит» и «хозяин — микробиом». Генетические аспекты контроля и изменения наследственной информации в поколениях клеток и организмов.

Демонстрации

Портреты: Г. Мендель, Т. Морган.

<u>Таблицы и схемы:</u> «Первый и второй законы Менделя», «Третий закон Менделя», «Анализирующее скрещивание», «Неполное доминирование», «Сцепленное наследование признаков у дрозофилы», «Генетика пола», «Кариотип человека», «Кариотип дрозофилы», «Кариотип птицы», «Множественный аллелизм», «Взаимодействие генов».

Оборудование: модель для демонстрации законов единообразия гибридов

заболеваний человека.

Демонстрации:

Портреты: Г. Мендель, Т. Морган, Г. де Фриз, С. С. Четвериков, Н. В. Тимофеев-Ресовский, Н. И. Вавилов.

Таблицы и схемы: «Моногибридное скрещивание и его цитогенетическая основа», «Закон расщепления и его цитогенетическая основа», «Закон чистоты гамет», «Дигибридное скрещивание», «Цитологические основы дигибридного скрещивания», «Мейоз», «Взаимодействие аллельных генов», «Генетические карты растений, животных и человека», «Генетика пола», «Закономерности наследования, сцепленного с полом», «Кариотипы человека и животных», «Виды изменчивости», «Модификационная изменчивость», «Генетика групп крови», «Мутационная изменчивость».

Оборудование: модели-аппликации «Моногибридное скрещивание», «Неполное доминирование», «Дигибридное скрещивание», «Перекрёст хромосом»; микроскоп и микропрепарат «Дрозофила» (норма, мутации формы крыльев и окраски тела); гербарий «Горох посевной».

Лабораторные и практические работы:

Лабораторная работа № 5. «Изучение результатов моногибридного и дигибридного скрещивания у дрозофилы на готовых микропрепаратах».

Лабораторная работа № 6. «Изучение модификационной изменчивости, построение вариационного ряда и вариационной кривой».

Лабораторная работа № 7. «Анализ мутаций у дрозофилы на готовых микропрепаратах».

Практическая работа № 2. «Составление и анализ родословных человека».

первого поколения и расщепления признаков; модель для демонстрации закона независимого наследования признаков; модель для демонстрации сцепленного наследования признаков; световой микроскоп, микропрепарат: «Дрозофила».

Лабораторные и практические работы

- <u>1.</u> <u>Практическая работа «Изучение результатов</u> моногибридного скрещивания у дрозофилы».
- 2. Практическая работа «Изучение результатов дигибридного скрешивания у дрозофилы».

Закономерности изменчивости

Взаимодействие генотипа и среды при формировании фенотипа. Изменчивость признаков. Качественные и количественные признаки. Виды изменчивости: ненаследственная и наследственная.

Модификационная изменчивость. Роль среды в формировании модификационной изменчивости. Норма реакции признака. <u>Вариационный ряд и вариационная кривая (В. Иоганнсен)</u>. Свойства модификационной изменчивости.

Генотипическая изменчивость. Свойства генотипической изменчивости. Виды генотипической изменчивости: комбинативная, мутационная.

Комбинативная изменчивость. Мейоз и половой процесс — основа комбинативной изменчивости. Роль комбинативной изменчивости в создании генетического разнообразия в пределах одного вида.

Мутационная изменчивость. Виды мутаций: генные, хромосомные, геномные. Спонтанные и индуцированные мутации. Ядерные и цитоплазматические мутации. Соматические и половые мутации. Причины возникновения мутаций. Мутагены и их влияние на организмы. Закономерности мутационного процесса. Закон гомологических рядов в наследственной изменчивости (Н. И. Вавилов). Внеядерная изменчивость и наследственность.

Эпигенетика и эпигеномика, роль эпигенетических факторов в наследовании и изменчивости фенотипических признаков у организмов.

Демонстрации

Портреты: Г. Де Фриз, В. Иоганнсен, Н. И. Вавилов.

<u>Таблицы и схемы:</u> «Виды изменчивости», «Модификационная изменчивость», «Комбинативная изменчивость», «Мейоз», «Оплодотворение», «Генетические заболевания человека», «Виды мутаций».

<u>Оборудование:</u> живые и гербарные экземпляры комнатных растений; рисунки (фотографии) животных с различными видами изменчивости.

Лабораторные и практические работы

- 1. Лабораторная работа «Исследование закономерностей модификационной изменчивости. Построение вариационного ряда и вариационной кривой».
- 2. Практическая работа «Мутации у дрозофилы (на готовых микропрепаратах)».

Генетика человека

Кариотип человека. Международная программа исследования генома человека. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, популяционно-статистический, молекулярно-генетический. Современное определение генотипа: полногеномное секвенирование, генотипирование, в том числе с помощью ПЦР-анализа. Наследственные заболевания человека. Генные и хромосомные болезни человека. Болезни с наследственной предрасположенностью. Значение медицинской генетики в предотвращении и лечении генетических заболеваний человека. Медикогенетическое консультирование. Стволовые клетки. Понятие «генетического груза». Этические аспекты исследований в области редактирования генома и стволовых клеток.

<u>Генетические факторы повышенной чувствительности человека</u> <u>к физическому и химическому загрязнению окружающей среды.</u> <u>Генетическая предрасположенность человека к патологиям.</u>

Демонстрации

<u>Таблицы и схемы:</u> «Кариотип человека», «Методы изучения генетики человека», «Генетические заболевания человека».

Лабораторные и практические работы

Тема 7. Селекция организмов. Основы биотехнологии

Селекция как наука и процесс. Зарождение селекции и доместикация. Учение Н. И. Вавилова о центрах происхождения и многообразия культурных растений. Центры происхождения домашних животных. Сорт, порода, штамм.

Современные методы селекции. Массовый и индивидуальный отборы в селекции растений и животных. Оценка экс-терьера. Близкородственное скрещивание — инбридинг. Чистая линия. Скрещивание чистых линий. Гетерозис, или гибридная сила. Неродственное скрещивание — аутбридинг. Отдалённая гибридизация и её успехи. Искусственный мутагенез и получение полиплоидов. Достижения селекции растений, животных и микроорганизмов.

Биотехнология как отрасль производства. Генная инженерия. Этапы создания рекомбинантной ДНК и трансгенных организмов. Клеточная инженерия. Клеточные культуры. Микроклональное размножение растений. Клонирование высокопродуктивных сельскохозяйственных организмов. Экологические и этические проблемы. ГМО — генетически модифицированные организмы.

Демонстрации:

Портреты: Н. И. Вавилов, И. В. Мичурин, Г. Д. Карпеченко, М. Ф. Иванов.

Таблицы и схемы: карта «Центры происхождения и многообразия культурных растений», «Породы домашних животных», «Сорта культурных растений», «Отдалённая гибридизация», «Работы академика М.Ф. Иванова», «Полиплоидия», «Объекты биотехнологии», «Клеточные культуры и клонирование», «Конструирование и перенос

Практическая работа «Составление и анализ родословной».

Селекция организмов

Доместикация и селекция. Зарождение селекции и доместикации. Учение Н. И. Вавилова о Центрах происхождения и многообразия культурных растений. Роль селекции в создании сортов растений и пород животных. Сорт, порода, штамм. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова, его значение для селекционной работы.

Методы селекционной работы. Искусственный отбор: массовый и индивидуальный. *Этапы комбинационной селекции*. Испытание производителей по потомству. Отбор по генотипу с помощью оценки фенотипа потомства и отбор по генотипу с помощью анализа ДНК.

Искусственный мутагенез как метод селекционной работы. Радиационный и химический мутагенез как источник мутаций у культурных форм организмов. Использование геномного редактирования и методов рекомбинантных ДНК для получения исходного материала для селекции.

Получение полиплоидов. Внутривидовая гибридизация. Близкородственное скрещивание, или инбридинг. Неродственное скрещивание, или аутбридинг. Гетерозис и его причины. Использование гетерозиса в селекции. Отдалённая гибридизация. Преодоление бесплодия межвидовых гибридов. Достижения селекции растений и животных. «Зелёная революция».

Сохранение и изучение генетических ресурсов культурных растений и их диких родичей для создания новых сортов и гибридов сельскохозяйственных культур. <u>Изучение, сохранение и управление генетическими ресурсами сельскохозяйственных и промысловых животных в целях улучшения существующих и создания новых пород, линий и кроссов, в том числе с применением современных методов научных исследований, передовых идей и перспективных технологий.</u>

Демонстрации

<u>Портреты:</u> Н. И. Вавилов, И. В. Мичурин, Г. Д. Карпеченко, П. П. Лукьяненко, Б. Л. Астауров, Н. Борлоуг, Д. К. Беляев.

<u>Таблицы и схемы:</u> «Центры происхождения и многообразия культурных

генов, хромосом».

Оборудование: муляжи плодов и корнеплодов диких форм и культурных сортов растений; гербарий «Сельскохозяйственные растения».

Лабораторные и практические работы:

Экскурсия «Основные методы и достижения селекции растений и животных (на селекционную станцию, племенную ферму, сортоиспытательный участок, в тепличное хозяйство, лабораторию агроуниверситета или научного центра)».

растений», «Закон гомологических рядов в наследственной изменчивости», «Методы селекции», «Отдалённая гибридизация», «Мутагенез».

Лабораторные и практические работы

- 1. Лабораторная работа «Изучение сортов культурных растений и пород домашних животных».
 - 2. Лабораторная работа «Изучение методов селекции растений».
 - 3. Практическая работа «Прививка растений».
- 4. Экскурсия «Основные методы и достижения селекции растений и животных (на селекционную станцию, племенную ферму, сортоиспытательный участок, в тепличное хозяйство, в лабораторию агроуниверситета или научного центра)».

Биотехнология и синтетическая биология (4 ч)

Объекты, используемые в биотехнологии, — клеточные и тканевые культуры, микроорганизмы; их характеристика. Традиционная биотехнология: хлебопечение, получение кисломолочных продуктов, виноделие. Микробиологический синтез. Объекты микробиологических технологий. Производство белка, аминокислот и витаминов.

Создание технологий и инструментов целенаправленного изменения и конструирования геномов с целью получения организмов и их компонентов, содержащих не встречающиеся в природе биосинтетические пути.

Клеточная инженерия. Методы культуры клеток и тканей растений и животных. Криобанки. Соматическая гибридизация и соматический эмбриогенез. Использование гаплоидов в селекции растений. Получение моноклональных антител. Использование моноклональных и поликлональных антител в медицине. Искусственное оплодотворение. Реконструкция яйцеклеток и клонирование животных. Метод трансплантации ядер клеток. Технологии оздоровления, культивирования и микроклонального размножения сельскохозяйственных культур.

<u>Хромосомная и генная инженерия. Искусственный синтез гена и конструирование рекомбинантных ДНК. Создание трансгенных организмов. Достижения и перспективы хромосомной и генной инженерии.</u>
<u>Экологические и этические проблемы генной инженерии.</u>

Медицинские биотехнологии. Постгеномная цифровая медицина. ПЦР-диагностика. Метаболомный анализ, геноцентрический анализ протеома человека для оценки состояния его здоровья. Использование стволовых клеток. Таргетная терапия рака. 3D-биоинженерия для разработки фундаментальных основ медицинских технологий, создания комплексных тканей сочетанием технологий трёхмерного биопринтинга и скаффолдинга для решения задач персонализированной медицины.

Создание векторных вакцин с целью обеспечения комбинированной защиты от возбудителей ОРВИ, установление молекулярных механизмов функционирования РНК-содержащих вирусов, вызывающих особо опасные заболевания человека и животных.

Демонстрации

<u>Таблицы и схемы:</u> «Использование микроорганизмов в промышленном производстве», «Клеточная инженерия», «Генная инженерия».

Лабораторные и практические работы

- 1. Лабораторная работа «Изучение объектов биотехнологии».
- 2. Практическая работа «Получение молочнокислых продуктов».
- 3. Экскурсия «Биотехнология важнейшая производительная сила современности (на биотехнологическое производство)».

	*Тематическое	планирование учебного предмета «Биология» 10 класс	
Базовый	й уровень (1 час)	Углубленный уровень (1+2часа)	
Кол-во			Кол-во
часов			часов
3 ч	Тем	а 1-2. Биология как наука. Живые системы	9ч
1ч	Биология как наука		1ч
		Φ ундаментальные, прикладные и поисковые научные	1ч

		исследования в биологии.	
		Профессии, связанные с биологией. Значение биологии	1ч
		в практической деятельности человека: медицине, сельском	
		хозяйстве, промышленности, охране природы.	
1ч	Методы познания живой природы		1ч
		Методы молекулярной и биологической науки.	1ч
		Понятие о зависимой и независимой переменной.	1ч
		Планирование эксперимента. Постановка и проверка	
		гипотез. Нулевая гипотеза. Понятие выборки и её	
		достоверность. Разброс в биологических данных. Оценка	
		достоверности полученных результатов. Причины	
		искажения результатов эксперимента. Понятие	
		статистического теста.	
1ч	Живые системы и их организация		1ч
		Свойства живых систем: единство химического состава,	1ч
		дискретность и целостность, сложность	
		и упорядоченность структуры, открытость,	
		самоорганизация, самовоспроизведение, раздражимость,	
		изменчивость, рост и развитие.	
		Науки, изучающие живые системы на разных уровнях	1ч
		организации.	
8ч	Тема 3. Химический	состав и строение клетки	24ч
1ч	V	T	1ч
14	Химический состав клетки. Вода и минеральные соли	14	14 14
		Минеральные вещества клетки, их биологическая роль.	
1		<u>Роль катионов и анионов в клетке.</u>	1ч
1ч	Белки. Состав и строение белков		1ч
		Классификация белков. Прионы.	1ч
		<u>Лабораторная работа «Обнаружение белков с помощью</u>	1ч
1	*	<u>качественных реакций».</u>	1
1ч	Ферменты — биологические катализаторы		1ч
		<u>Белки-активаторы и белки-ингибиторы</u>	1ч
		Зависимость скорости ферментативных реакций от	1ч

		различных факторов	
1ч	Углеводы. Липиды		1ч
		Общий план строения и физико-химические свойства углеводов	1ч
		Биологические функции липидов. Общие свойства биологических мембран текучесть, способность к самозамыканию, полупроницаемость.	1ч
1ч	Нуклеиновые кислоты. АТФ		1ч
		<u>Другие нуклеозидтрифосфаты (НТФ). Секвенирование</u> <u>ДНК.Методы геномики, транскриптомики, протеомики.</u>	1ч
		Лабораторная работа «Исследование нуклеиновых кислот, выделенных из клеток различных организмов».	1ч
1ч	История и методы изучения клетки. Клеточная теория		1ч
		История открытия клетки. Работы Р. Гука, А. Левенгука. Клеточная теория (Т. Шванн, М. Шлейден, Р. Вирхов). Методы молекулярной и клеточной биологии: микроскопия, хроматография, электрофорез, метод меченых атомов, дифференциальное центрифугирование, культивирование клеток. Изучение фиксированных клеток. Электронная микроскопия. Конфокальная микроскопия. Витальное (прижизненное) изучение клеток. Практическая работа «Изучение методов клеточной биологии (хроматография, электрофорез, дифференциальное центрифугирование, ПЦР)».	1ч
1ч	Клетка как целостная живая система		1ч
		Клеточная стенка бактерий и архей. Особенности строения гетеротрофной и автотрофной прокариот в биоценозах.	1ч
		Транспорт веществ через плазматическую мембрану: пассивный (диффузия, облегчённая диффузия, осмос), активный (первичный и вторичный активный транспорт). Полупроницае мость мембраны. Работа натрий-калиевого	1ч

		насоса. Эндоцитоз: пиноцитоз, фагоцитоз. Экзоцитоз.	
1		<u>свойств клеточной мембраны».</u>	1
1ч	Строение эукариотической клетки		1ч
		<u>Цитозоль. Цитоскелет. Движение цитоплазмы. Взаимосвязь</u>	1ч
		одномембранных органоидов клетки. Строение гранулярного	
		ретикулума. Механизм направления белков в ЭПС. Синтез	
		растворимых белков. Синтез клеточных мембран. Гладкий	
		(агранулярный) эндоплазматический ретикулум.	
		Секреторная функция аппарата Гольджи. Клеточный сок.	
		Тургор. Лабораторная работа «Исследование плазмолиза и	
		<u>деплазмолиза в растительных клетках».</u>	
		Происхождение митохондрий и пластид. Симбиогенез (К. С.	1
		Мережковский, Л. Маргулис). Первичные, вторичные и	
		сложные пластиды фотосинтезирующих эукариот.	
		Микрофиламенты. Актиновые микрофиламенты.	
		Мышечные клетки. Актиновые компоненты немышечных	
		клеток. Микротрубочки. Клеточный центр. Строение и	
		движение жгутиков и ресничек. Микротрубочки	
		цитоплазмы. Центриоль. Белки, ассоциированные с	
		микрофиламентами и микротрубочками. Моторные белки	
6ч	Тема 4.Жизнед	еятельность клетки	18ч
1ч	Обмен веществ. Пластический обмен.		1ч
		$\it Л$ а б о р а т о р н а я р а б о т а «Изучение каталитической	1ч
		активности ферментов (на примере амилазы или	
		каталазы)».	
		Лабораторная работа «Изучение	1ч
		ферментативного расщепления пероксида водорода	
		в растительных и животных клетках»	
1ч	Фотосинтез. Хемосинтез		1ч

		· · · · · · · · · · · · · · · · · · ·	1
		Аноксигенный и оксигенный фотосинтез у бактерий.	1ч
		Светособирающие пигменты и пигменты реакционного	
		центра.	
		Роль хлоропластов в процессе фотосинтеза. Световая и	1ч
		темновая фазы. Фотодыхание, C_{3-} , C_{4-} и САМ-типы	
		фотосинтеза. Лабораторная работа «Сравнение	
		процессов фотосинтеза и хемосинтеза».	
1ч	Энергетический обмен		1ч
		Продукты брожения и их использование человеком.	1ч
		Анаэробные микроорганизмы как объекты биотехнологии и	
		возбудители болезней.	
		Циклические реакции. Окислительное фосфорилирование.	1ч
		Энергия мембранного градиента протонов. Синтез АТФ:	
		работа протонной АТФ-синтазы. Преимущества аэробного	
		пути обмена веществ перед анаэробным. Эффективность	
		энергетического обмена.	
1ч	Биосинтез белка. Реакции матричного синтеза.		1ч
	Генетическая информация и ДНК. Реализация		
	генетической информации в клетке. Генетический код и		
	его свойства.		
	его своиства.		
		Принципы транскрипции: комплементарность,	1ч
		антипараллельность, асимметричность.	
		Созревание матричных РНК в эукариотической клетке.	1ч
		Некодирующие РНК.	
1ч	Биосинтез белка. Транскрипция — матричный синтез		1ч
	РНК. Трансляция — биосинтез белка. Этапы		
	трансляции. Кодирование аминокислот. Роль рибосом в		
	биосинтезе белка.		
		Участие транспортных РНК в биосинтезе белка. Условия	1ч
		биосинтеза белка.	_

_		-	
		Организация генома у прокариот и эукариот. Регуляция	1ч
		активности генов у прокариот. Гипотеза оперона (Φ .	
		Жакоб, Ж. Мано). Молекулярные механизмы экспрессии	
		генов у эукариот. Роль хроматина в регуляции работы генов.	
		Регуляция обменных процессов в клетке. Клеточный	
		гомеостаз.	
1ч	Неклеточные формы жизни — вирусы		1ч
		Жизненный цикл ДНК-содержащих вирусов, РНК-	1ч
		содержащих вирусов, бактериофагов. Обратная	
		транскрипция, ревертаза, интеграза.	
		Практическая работа «Создание модели вируса».	1ч
5ч	Тема 5.Размножение и инди	видуальное развитие организмов	15ч
1ч	Жизненный цикл клетки. Деление клетки. Митоз		1ч
		Матричный синтез ДНК — репликация. Принципы	1ч
		репликации ДНК: комплементарность, полуконсервативный	
		синтез, антипараллельность. Механизм репликации ДНК.	
		Хромосомы. Строение хромосом. Теломеры и теломераза.	
		Хромосомный набор клетки — кариотип. Диплоидный и	
		гаплоидный наборы хромосом. Гомологичные хромосомы.	
		Механизмы пролиферации, дифференцировки, старения	1ч
		и гибели клеток. «Цифровая клетка»—	
		биоинформатические модели функционирования клетки.	
1ч	Формы размножения организмов.		1ч
		Половые хромосомы	1ч
		Организм как единое целое	1ч
1ч	Мейоз		
		<u>Ткани растений, животных и человека</u>	1ч
		Органы. Системы органов.	1ч
1ч	Образование и развитие половых клеток. Оплодотворение	_	1ч

		Опора тела организмов. Движение организмов	1ч
		<u>Питание и дыхание организмов</u>	1ч
1ч	Индивидуальное развитие организмов		
		Транспорт веществ у организмов. Выделение у организмов	1ч
		Защита у организмов. Раздражимость и регуляция у	1ч
		<u>организмов</u>	
8ч	Тема 6.Наследственност	ь и изменчивость организмов	24ч
1ч	Генетика — наука о наследственности и изменчивости		1ч
		Работы Г. Менделя, Г. Де Фриза, Т. Моргана. Роль отечественных учёных в развитии генетики. Работы Н. К. Кольцова, Н. И. Вавилова, А. Н. Белозерского, Ю. А. Филипченко, Н. В. Тимофеева-Ресовского.	1ч
		<u>Основные методы генетики: гибридологический, иитологический, молекулярно-генетический.</u>	1ч
1ч	Закономерности наследования признаков. Моногибридное скрещивание		1ч
		<u>Анализирующее скрещивание.</u>	1ч
		<u>Промежуточный характер наследования. Расщепление</u> признаков при неполном доминировании.	1ч
1ч	Дигибридное скрещивание. Закон независимого наследования признаков		1ч
		<u>Цитологические основы дигибридного скрещивания.</u>	2ч
1ч	Сцепленное наследование признаков		1ч
_		Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности.	2ч
			1ч

1ч	Генетика пола. Наследование признаков, сцепленных с полом		1ч
		Генотип как целостная система	2ч
1ч	Изменчивость. Ненаследственная изменчивость		1ч
		Норма реакции признака.	1ч
		Вариационный ряд и вариационная кривая (В. Иоганнсен).	1ч
1ч	Наследственная изменчивость		1ч
		Внеядерная изменчи вость и наследственность. Эпигенетика и эпигеномика, роль эпигенетических факторов в наследовании и изменчивости фенотипических признаков у организмов.	2ч
1ч	Генетика человека		1ч
		Медико-генетическое консультирование. Стволовые клетки. Понятие «генетического груза». Этические аспекты исследований в области редактирования генома и стволовых клеток.	1ч
		Генетические факторы повышенной чувствительности человека к физическому и химическому загрязнению окружающей среды. Генетическая предрасположенность человека к патологиям.	1ч
3ч	Тема 7.Селекция органи	измов. Основы биотехнологии	9ч
1ч	Селекция как наука и процесс		1ч
		Закон гомологических рядов в наследственной изменчивости <u>Н. И. Вавилова, его значение для селекционной работы.</u>	2ч

1ч	Методы и достижения селекции растений и животных		1ч
		Этапы комбинационной селекции.	1ч
		Достижения селекции растений и животных.«Зеленая революция». Сохранение и изучение генетических ресурсов культурных растений и их диких родичей для создания новых сортов и гибридов сельскохозяйственных культур. Изучение, сохранение и управление генетическими ресурсами сельскохозяйственных и промысловых животных в целях улучшения существующих и создания новых пород, линий и кроссов, в том числе с применением современных методов научных исследований, передовых идей и перспективных технологий.	1ч
1ч	Биотехнология как отрасль производства		1ч
		Биотехнология и синтетическая биология	2ч
1ч	Обобщение	знаний	3ч